д.т.н. Окалелов В.Н., д.т.н. Фрумкин Р.А. (ДонГТУ, г. Алчевск, Украина)

МЕТОДИКА ОЦЕНКИ ОДНОРОДНОСТИ УСЛОВИЙ ЗАЛЕГАНИЯ УГОЛЬНЫХ ПЛАСТОВ

Розроблено алгоритм оцінки однорідності умов залягання вугільних пластів стосовно визначення їх сприятливості до першочергової розробки.

Ключові слова: геологічні умови, однорідність.

Разработан алгоритм оценки однородности условий залегания угольных пластов применительно к определению благоприятности их к первоочередной разработке.

Ключевые слова: геологические условия, однородность.

В настоящее время отсутствует методика, выявления участков пластов с однородными сочетаниями значений количественных и качественных факторов. Это объясняется тем, что известные методы математической статистики предназначены, в основном, для оценки однородности количественных данных. При этом их число в выборке должно быть не меньше 30-50 [1]. Поэтому возникла необходимость в разработке такой методики, которая бы позволяла выявлять однородные сочетания качественных и количественных значений геологических факторов, не налагала бы жестких ограничений на количество исходных данных в выборках и законы их распределения. При ее создании реализован принцип последовательного выделения однородных совокупностей исходных геологических данных. Для этого на начальном этапе по каждой скважине устанавливаются качественные и количественные значения геологических факторов, оказывающих влияние на ТЭП очистных работ. Они определяются по материалам документирования скважин и камеральной обработки исходной геологической информации. В результате формируется исходный массив данных, количество которых равно количеству скважин, пересекающих разведанный угольный пласт.

На втором этапе по данным каждой скважины прогнозируются качественные и дискретные количественные признаки геологических факторов и ожидаемые значения технико-экономических показателей

очистных работ. В результате формируется база исходных данных значений ТЭП.

Третий этап предусматривает выделение групп скважин с одинаковыми сочетаниями качественных признаков. Если количество скважин, попавших в какую-либо такую группу больше или равно 30-и, то по ним рассчитываются средние арифметические значения, дисперсия, коэффициенты вариации ТЭП и устанавливается закон их распределения. В тех случаях, когда закон распределения является нормальным, а коэффициент вариации меньше или равен 30%, принимается решение об однородности значений ТЭП в пределах выделенных вариантов сочетаний качественных признаков [2].

На четвертом этапе осуществляется попарное сравнение выделенных ранее однородных групп условий с использованием параметрических критериев Стьюдента и Фишера [3, 4]. Те выборки, у которых различия в средних арифметических и среднеквадратических отклонениях значений ТЭП не существенны, объединяются и для них рассчитываются групповые значения указанных выше статистических показателей. Выборки, у которых количество скважин менее 30, сравниваются с помощью непараметрических критериев различия [5]. Наиболее мощным из них является критерий Вилкоксона [5]. Он может применяться даже в тех случаях, когда количество наблюдений в каждой из сравниваемых выборок равно 3÷5.

Если количество наблюдений в выборке меньше 3, то проверяется возможность их присоединения к другим, содержащим большее число наблюдений. Решение этой задачи предлагается осуществлять с использованием \mathfrak{G}_p :

$$\mathcal{G}_{p} = \frac{a_{(n)} - \overline{a}}{\sqrt{\frac{n-1}{n} \Delta S_{n}}} \quad \text{или} \quad \frac{\overline{a} - a_{(n)}}{\sqrt{\frac{n-1}{n} \Delta S_{n}}}, \tag{1}$$

где $a_{(n)}$ — наибольшее или наименьшее значение в серии из n измерений;

 ΔS_n — среднеквадратическое отклонение;

 \overline{a} — средняя величина. Полученное значение ϑ_p сравнивается с пороговым ϑ_{\max} . Если $\mathcal{9}_p{>}\mathcal{9}_{\max}$, то проверяемое значение ТЭП не может быть присоединено к сравниваемой выборке и наоборот.

На завершающем пятом этапе в группах скважин с коэффициентом вариации ТЭП больше 30% производится выявление неоднородных

сочетаний значений количественных факторов. Поскольку в этом случае речь идет уже о классификации объектов по комплексу количественных признаков, то для решения такой задачи необходимо применять многомерные критерии, а не одномерные. В качестве такого критерия целесообразно использовать критерий Родионова Д.А. [6], который в свое время успешно использован нами для проверки объективности выделения классов условий отработки лав по величине "заданных деформаций кровли". При этом решение задачи не требовало линейно упорядочивать исходное множество данных, в то время, как в работе [6] их упорядочение велось по глубине скважины. В нашем же случае ни первый, ни второй вариант использования критерия не приемлем. Здесь необходима процедура расположения скважин по возрастанию соответствующих им значений ТЭП. В этом случае выделение однородных сочетаний значений геологических факторов сводится к пошаговому расчету $\mathcal{G}(r^2)$, начиная с первого варианта разбиения исходного множества T, при котором $n_1=1$, а $n_2=T$ -1 и заканчивая вариантом, когда $n_1=T$ -1, а $n_2=1$. Если на каком-либо шаге выполняется условие $\vartheta(r^2) \ge \chi^2_{\alpha m}$, то принимается решение о том, что установленная граница между выборками является достоверной, а различия между ними значимыми. Для выделенных по критерию $9(r^2)$ групп скважин рассчитываются средние арифметические и среднеквадратические отклонения ТЭП.

В результате реализации рассмотренной методики выделяются однородные условия ведения очистных работ, в пределах которых индивидуальные значения ТЭП заменяются их средними величинами и среднеквадратическими отклонениями, которые характеризуют группы в целом. Поскольку индивидуальные значения ТЭП, входящие в однородную группу условий, определены применительно к конкретным разведочным скважинам, то, зная их расположение на гипсометрических планах, можно выделить участки пластов с разнородными условиями их залегания.

Разработанная методика отличается от известных тем, что в ней в качестве основного количественного индикатора однородности геологических условий приняты ТЭП очистных работ, наиболее чувствительных к изменению этих условий. Кроме того, она основана на использовании комплекса методов оценки однородности исходных данных, каждый из которых применяется в зависимости от реально складывающихся условий решения задачи, что делает методику универсальной. Укрупнено разработанная методика представлена на рисунке 1 в виде блок-схемы.

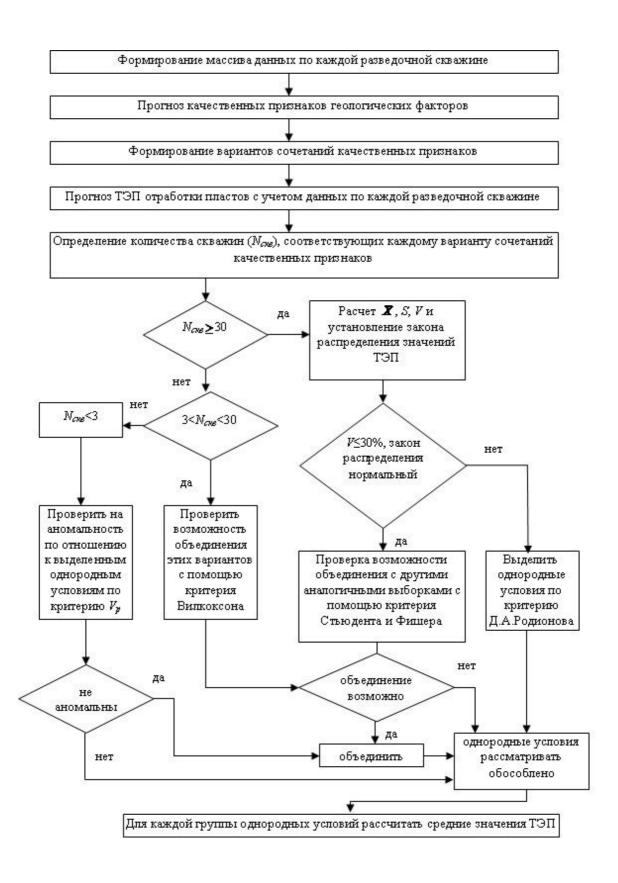


Рисунок 1 — Блок-схема оценки однородности условий залегания угольных пластов

Как видно, алгоритм выделения однородных условий достаточно сложен, что объясняется не только комплексным использованием большого числа методов решений задачи, но и значительной трудоемкостью прогноза качественных признаков геологических факторов и ТЭП работы очистных забоев. Трудоемкость решения этих задач растет пропорционально количеству пластопересечений, число которых при детальной разведке может достигать нескольких сотен только по одному из пластов. Отсюда вытекает необходимость в разработке более простых и достаточно надежных методов их прогноза, позволяющих отказаться от прямых калькуляционных расчетов.

Библиографический список

- $1.\ \Gamma$ аскаров Д.В. Малая выборка / Д.В. Гаскаров, В.И. Шаповалов. -M.: Статистика, 1978.-248 с.
- 2. Математическая статистика / В.М. Иванова, В.Н. Калинина, \mathcal{J} .А. Нешумова, И.О. Решетникова. М.: Высшая школа, 1975. 398 с.
- 3. Комаров И.С. Накопление и обработка информации при инженерно-геологических исследованиях / И.С. Комаров. М.: Недра, 1972. 296 с.
- 4. Урбах В.Ю. Биометрические методы / В.Ю. Урбах. М.: Нау-ка, $1964.-415\ c.$
- 5. Гублер Е.В. Применение критериев непараметрической статистики для оценки различий двух групп наблюдений в медикобиологических исследованиях / Е.В. Гублер, А.А. Генкин. М.: Медицина, 1969. 29 с.
- 6. Родионов Д.А. Статистические методы разграничения геологических объектов / Д.А. Родионов. M.: Недра, 1968. 273 с.