Лепило Н. Н. к.т.н., доц. каф. ЭКиИТ, Яковенко Н. Ю. студентка каф. ЭКиИТ ГОУ ВПО ЛНР «Донбасский государственный технический университет», г. Алчевск, ЛНР

СОВЕРШЕНСТВОВАНИЕ УПРАВЛЕНИЯ ПЕРСОНАЛОМ ОХРАННОГО ПРЕДПРИЯТИЯ НА ОСНОВЕ СППР

Деятельность любой компании в значительной мере зависит от эффективного управления ее персоналом. В настоящее время широко применяются организационно-распорядительные, экономические и социально-психологические методы управления персоналом, нацеленные на увеличение лояльности сотрудников и повышение уровня их мотивации [1]. Для облегчения работы с персоналом применяются системы управления персоналом (Human Resources Management systems, HRM-системы). Многие современные ERP-системы включают HRM-модули (например, «Управление персоналом и зарплата»). Однако представленные на российском рынке HRM-системы в основном предназначены для автоматизации учетно-расчетных функций и ведения кадрового делопроизводства, имеют высокую цену внедрения и поддержки, поэтому приемлемы для крупного и среднего сегментов бизнеса.

Для охранных предприятий актуальна задача подбора персонала и его оптимального распределения по объектам, которая не реализована в HRM-системах. На практике распределение персонала по объектам охраны обычно осуществляется руководителем структурного подразделения с учетом личных предпочтений и предпочтений сотрудников. Математическая модель оптимизации этого процесса, как правило, сводится к решению классической задачи о назначениях, которая рассматривается и решается как задача линейного программирования. В работе [2] предложена экономико-математическая модель распределения персонала по работам с учетом их предпочтений, основанная на использовании двух целевых функций, однако в ней, как и в классической задаче о назначениях, не учитываются деловые качества персонала. В работе [3] рассмотрен метод решения многокритериальной задачи о назначениях, основанный на алгоритмах порядковой нормализации, когда взвешенные значения критериев приводятся к единой шкале.

В настоящей работе рассмотрена задача о назначениях на основе двух критериев, зависящих от деловых качеств персонала: максимизации качества выполнения работ (q) и минимизации суммарных затрат на их выполнение (p). При этом должны соблюдаться ограничения: каждую работу выполняет один сотрудник и общее время работы каждого сотрудника не должно превышать его установленной нормы.

Для решения оптимизационной задачи с целью перехода от двух критериев к одному применена целевая функция

$$F(q,p) = q^{\alpha} \cdot \left(\frac{1}{p}\right)^{\beta} \to \max,\tag{1}$$

которая построена согласно неоклассической функции полезности и в общем случае является нелинейной функцией (при этом предполагается, что $\alpha+\beta=1$). Поэтому для решения данной задачи нельзя применить стандартные методы решения классической задачи о назначениях. Входными данными рассмотренной задачи являются сведения о работниках и их характеристики, а также виды работ и требования, характерные для каждого вида работ, а выходными — предложенное распределение персонала по работам и значение результирующего показателя F. Совокупность показателей работы предприятия, содержащая входные и выходные данные по фактически выполненным работам, формируется в виде таблицы и экспортируется в файл формата DBF.

Для получения аналитического вида зависимости F(q,p) использован самообучающийся алгоритм на основе нейронной сети, имеющей 16 входных полей и одно выходное. Для построения нейросети применен программный продукт NeuroPro 0.25. При этом использован трехслойный персептрон, содержащий по 10 нейронов в первом и втором слоях и один нейрон — в третьем. В качестве нелинейной активационной функции использовано сигмоиду.

Созданная сеть прошла тестирование на тестовом множестве, представленном в виде таблицы данных в формате DBF с известными входными и выходными значениями. Результаты показали необходимость обучения сети, которое выполнено методом обратного распространения ошибки [4]. Повторное тестирование показало, что построенная нейросетевая модель адекватна (процент распознанных примеров на обучающем и тестовом множестве составил 100 %).

Вербальное описание нейросети, сгенерированное программой NeuroPro 0.25, положено в основу системы поддержки принятия решений (СППР). Для поиска оптимального значения целевой функции в СППР использован модифицированный генетический алгоритм [4]. Для физического проектирования базы данных выбрано программный продукт dbForge Studio for MySQL, для создания программного обеспечения СППР — среду Microsoft Visual Studio 2010 и язык программирования Visual Basic.net.

Внедрение СППР позволит оптимизировать процессы управления персоналом предприятия и повысить эффективность выполняемых работ за счет более полного использования потенциальных возможностей персонала.

Список литературы

- 1. Методы управления персоналом [Электронный ресурс] // Директор по персоналу, 2019. Режим доступа: https://www.hr-director.ru/article/66636-qqq-17-m4-metody-upravleniya-personalom (дата обращения: 13.11.2019).
- 2. Медведева, О. А. Решение задачи о назначениях с дополнительным требованием / О. А. Медведева, А. Ю. Полетаев // Вестник ВГУ. Серия : Системный анализ и информационные технологии. 2016. № 1. С. 77–81.
- 3. Никонов, О. Я. Математические методы решения многокритериальной задачи о назначениях / О. Я. Никонов, О. А. Подоляка, А. Н. Подоляка, Е. В. Скакалина // Вестник ХНАДУ. 2011. № 55. С 103–112.
- 4. Рутковская, Д. Нейронные сети, генетические алгоритмы и нечеткие системы / Д. Рутковская, М. Пилиньский, Л. Рутковский ; пер. с польск. И. Д. Рудинского. М. : Горячая линия, 2006. 452 с.