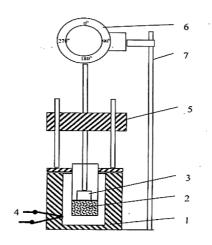
Шмарин Д. С. студент, **Карпов А. В.** к.т.н., доц. ЛГТУ, г. Липецк, Россия, **Диментьев А. О.** к.т.н., доц. ГОУ ВО ЛНР «ДонГТИ», г. Алчевск, ЛНР

ЗАВИСИМОСТЬ ИЗМЕНЕНИЯ ТЕМПЕРАТУРНЫХ ИНТЕРВАЛОВ РАЗМЯГЧЕНИЯ ОКАТЫШЕЙ ОТ ИХ ИСТИННОЙ ПЛОТНОСТИ

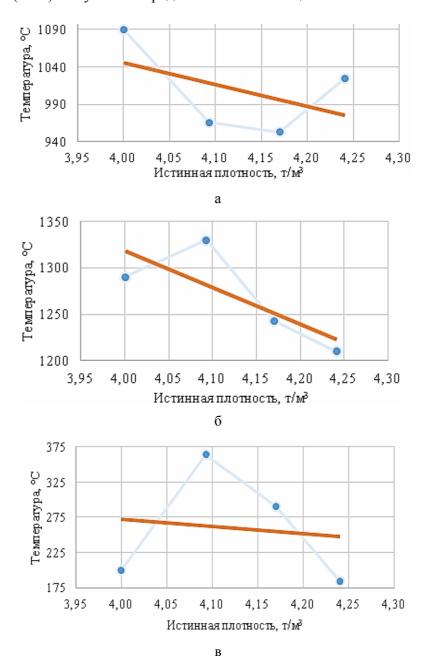
Работа направлена на исследование интервалов размягчения железорудных окатышей с целью выявления зависимости температурных показателей от истинной плотности материала. По результатам эксперимента сделан вывод, о наличии тенденции к снижению температур начала и конца размягчение, а также сужения и общего интервала размягчения при повышении истинной плотности окатышей.


Ключевые слова: окускование железорудных материалов, окатыши, восстановление, температурный интервал размягчения.

Производительность и эффективность металлургических агрегатов неустанно растёт, следуя тенденциям рынка. Доменные печи требуют непрерывной подачи железорудных материалов, качество которых для обеспечения улучшения технико-экономических показателей должно постоянно совершенствоваться.

В связи с тенденцией на повышение доли окатышей в шихте доменных печей мы решили провести исследование по определению температурных интервалов размягчения окатышей (рис. 1), демонстрирующих протяженность зоны когезии [1].

Эксперимент проводился на 4-х видах окатышей от различных производителей. В качестве ориентира для оценки содержания железа в образцах была принята их истинная плотность — чем больше железа в составе, тем выше плотность. Определение истинной плотности производилось в соответствии с ГОСТ [2].


Размягчение материалов проводилось в ЛГТУ, по методике соответствующей ГОСТ 26517–85 [3].

1 — индукционная печь; 2 — графитовый стаканчик; 3 — шток; 4 — термопара; 5 — груз; 6 — индикатор; 7 — штатив

Рисунок 1 — Схема установки для определения температуры размягчения железорудных материалов

В результате работы были получены (рис. 2): температура начала размягчения (ТНР); температура конца размягчения (ТКР); температура плавления (ТП); температурный интервал размягчения (ТИР). Результаты представлены в таблице 1.

a — температура начала размягчения; δ — температура конца размягчения; ϵ — температурный интервал размягчения

Рисунок 2 — Температурные характеристики окатышей при размягчении

Таблица 1 — Температурные интервалы размягчения окатышей

№ пробы	THP, ℃	TKP, °C	ТП, ℃	ТИР, ℃
1	1090	1290	1499	200
2	966	1330	1446	364
3	953	1243	1504	291
4	1025	1210	1422	184

По итогу проведенной работы получено, что повышение истинной плотности окатышей из-за увеличения содержания железа в них влечет за собой снижение температур начала и конца размягчения, благодаря чему уменьшится размер зоны когезии [4].

Список литературы

- 1. Кузин, А. В. Оценка газопроницаемости зоны когезии в доменной печи / А. В. Кузин, Н. С. Хлапонин // Сталь. 2019. № 3. С. 6–12.
- 2. ГОСТ 25732–88. Руды железные и марганцевые, концентраты, агломераты и окатыши. Методы определения истинной, объемной, насыпной плотности и пористости.
- 3. ГОСТ Р 26517–85. Руды железные, агломераты и окатыши. Метод определения температуры начала размягчения и температурного интервала размягчения.
- 4. Методика количественной оценки изменения параметров зоны когезии на удельный расход кокса в доменной печи / В. Н. Титов, И. В. Куприянова, Т. В. Кравченко, Е. О. Семёнычева // Вестник Липецкого государственного технического университета. 2020. № 1 (42). С. 82–85.