УДК 531.31.15+669

Мороз В. В., к.ф.-м.н. Рубежанский В. И., к.т.н. Левченко Э. П. (ДонГТУ, г. Алчевск, ЛНР)

ОЦЕНКА И УТОЧНЕНИЕ УСЛОВИЙ ПОДАЧИ АГЛОСПЕКА В РАБОЧУЮ ЗОНУ ОДНОВАЛКОВОЙ ЗУБЧАТОЙ ДРОБИЛКИ

Приведены результаты аналитических исследований подачи агломерационного пирога в рабочее пространство одновалковой зубчатой дробилки горячего агломерата. Установлена зависимость перемещения аглоспека от времени его сползания по направляющей поверхности срезающего ножа.

Ключевые слова: аналитические исследования, одновалковая зубчатая дробилка, агломерационный пирог, перемещение, дифференциальные уравнения.

Проблема и её связь с научными и практическими задачами.

Важнейшим приоритетным направлением повышения эффективности работы одновалковой зубчатой дробилки горячего агломерата и качественного фракционного состава сырья для доменной плавки является усовершенствование механического оборудования агломерационных цехов на базе их типовых конструкций, что позволяет с наименьшими материальными и временными затратами проводить модернизацию в условиях непрерывно действующего металлургического производства.

Согласно методике И.Д. Костогрызова и В.В. Горностаева (Магнитогорский горно-металлургический институт) [1] агломерационный пирог после спекания на агломерационной машине конвейерного типа поступает в одновалковую дробилку под действие зубьев звёздочек ротора с таким условием, что сначала осуществляется его излом пополам по длине, а затем оставшиеся части продавливаются через горизонтально расположенную колосниковую решётку. Однако данная методика не уточняет, на основании чего создаются такие условия в рабочей камере дробилки, так как математическое обоснование этого вопроса выражено недостаточно полно [2].

В работах [3, 4] сделана попытка математического описания процесса подачи аглоспёка

под действие рабочих органов дробилки, однако оно требует некоторой проверки и угочнения на основе более чётких представлений о типовом технологическом процессе производства агломерата в реальных условиях.

Постановка задачи. Задачей аналитических исследований является уточнение условий подачи аглоспека в рабочую зону одновалковой зубчатой дробилки на основе составления и решения дифференциальных уравнений движения куска пирога после соскальзывания со спекательной тележки с целью определения величины перемещения внугрь зоны дробления по горизонтальным колосникам.

Изложение материала и его результаты. Расчётная схема движения агломерата после его соскальзывания со спекательной тележки агломерационной машины представлена в виде поверхности O_1OO_2 с изломом (рис. 1).

Характеристики поступательного движения на участке O_1O являются начальными условиями при его переходе в дальнейшем в плоскопараллельное движение.

При движении на первом участке конечную скорость пирога определится как

$$S_0 = \sqrt{2gl_{cn}(\sin\alpha - f\cos\alpha) + V_0^2}, \quad (1)$$

где V_0 — скорость в начале перемещения, принимаемая равной скорости движе-

ния спекательной тележки; l_{cn} — длина сползания пирога; f — коэффициент трения материала аглоспека о поверхность направляющей; g — ускорение свободного падения, обычно принимаемое 9,81 м/с².

Пирог спечённого агломерата представляется в виде прямоугольного параллелепипеда, размеры которого в сечении равны: AB = 2l, AE = 2h.

Обозначим расстояние концов A и B до масс C через L: $AC = BC = L = \sqrt{l^2 + h^2}$. Пусть φ — угол плоскости AB пирога к направляющей, остальные углы очевидны; обозначим угол $CAO = \alpha + \varphi_0 - \varphi = \beta - \varphi$, где $\beta = \alpha + \varphi_0$.

Положение сечения (АВКЕ) пирога определяется положением центра масс координаты X_c , Y_c и углом поворота φ . Тогда дифференциальные уравнения плоского движения тела [5] запишутся в виде следующих выражений:

$$mX_C = N_B (\sin \alpha - f \cos \alpha) - fN_A, \quad (2)$$

$$mY_C = N_B (\cos \alpha - f \sin \alpha) - N_A - mg, (3)$$

$$J_C \varphi = N_A L \Big[\cos(\beta - \varphi) - f \sin(\beta - \varphi) \Big] -$$

$$(4)$$

$$-N_B L \Big[\cos (\varphi + \varphi_0) + f \sin (\varphi + \varphi_0) \Big],$$

где N_A , N_B — реакции плоскостей, здесь принято, что $F_{mp}^A = fN_A$, $F_{mp}^B = fN_B$; J_C — момент инерции тела относительно главной центральной оси Z, проходящей через центр масс C.

Тело (*ABKE*) имеет одну степень свободы, следовательно, три уравнения (2)–(4) могут быть сведены к одному уравнению. Примем за независимую переменную перемещение S точки A по колоснику: OA=S=S(t).

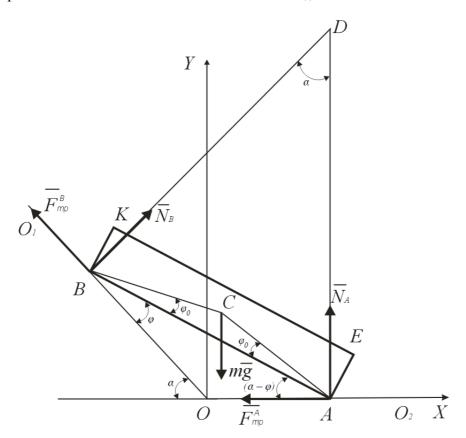


Рисунок 1 Расчётная схема движения аглопирога

Выражая координаты X_C , Y_C центра масс через угол φ , имеем:

$$X_C = S - L\cos(\beta - \varphi),$$

$$Y_C = S - L\sin(\beta - \varphi).$$

Найдём проекции ускорения центра масс на оси X, Y:

$$X_C = S - L\varphi \sin(\beta - \varphi) + L\varphi^2 \cos(\beta - \varphi), (5)$$

$$Y_C = -L\varphi\cos(\beta - \varphi) - L\varphi\sin(\beta - \varphi).$$
 (6)

Определим угловую скорость поворота тела *(АВКЕ)* как функцию от скорости перемещения точки A, а именно

$$\omega = \stackrel{\bullet}{\varphi} = \frac{V_A}{AD},\tag{7}$$

где точка D является мгновенным центром скоростей.

Используя теорему синусов, найдём $AD = \frac{2l\cos\varphi}{\sin\varphi}\,, \quad \text{и} \quad \text{дифференцирование} \quad \text{по}$

времени выражения (7) даёт

$$\varphi = \frac{\sin \alpha}{2l} \left[\frac{S}{\cos \varphi} + \frac{S \varphi \sin \varphi}{\cos^2 \varphi} \right], \quad (8)$$

в котором

$$\sin \varphi = \frac{\sin \alpha}{2l} \cdot S, \quad \cos \varphi = \sqrt{1 - \frac{\sin^2 \alpha}{4l^2} \cdot S^2}, (9)$$

$$\varphi = \frac{\sin \alpha}{2l} \sqrt{1 - \frac{\sin^2 \alpha}{4l^2} \cdot S^2}.$$

Подставляя φ , $\sin \varphi$, $\cos \varphi$, записанные выше, в выражение (8), определим зависимость углового ускорения как второй производной от угла поворота φ от независимой координаты S и её производных.

Для формирования окончательного уравнения движения заменим выражения реакций

 N_A и N_B в выражении (4), определяемые из уравнений (2) и (3). Представим данное выражение его с учётом математических соотношений зависимостей (5), (6), (8) в виде

$$\frac{H^{2} \bullet \bullet}{BL} \varphi = \left[A_{1} \begin{pmatrix} \bullet \bullet \\ Y_{C} + g \end{pmatrix} - A_{2} X_{C} \right] \times \\
\times \left[\cos(\beta - \varphi) - f \sin(\beta - \varphi) \right] - \\
- \left[f \cdot g + X_{C} + f Y_{C} \right] \times \\
\times \left[\cos(\varphi + \varphi_{0}) + f \cdot \sin(\varphi + \varphi_{0}) \right], \tag{10}$$

где момент инерции $J_{C}[2]$ равен

$$J_C = m \frac{(2l)^2 + [2h]^2}{12} = mH^2,$$

где

$$H^{2} = m \frac{(2l)^{2} + [2h]^{2}}{12},$$

$$B = \frac{1}{(1+f^{2}) \cdot \sin \alpha},$$

$$A_{1} = \sin \alpha - f \cos \alpha,$$

$$A_{2} = \cos \alpha + f \sin \alpha.$$

С математической точки зрения уравнение движения аглоспека в принятой постановке задачи является нелинейным дифференциальным уравнением второго порядка относительно перемещения *S*. Причём нелинейность относится к разряду сильных нелинейностей, и, следовательно, его решение в квадратурах невозможно.

Для решения уравнения (10) проведём его линеаризацию. Такая линеаризация обеспечивается конструктивными особенностями серийно выпускаемых одновалковых зубчатых дробилок.

Считаем угол φ малой величиной, т. е. полагаем $\varphi = \delta \cdot f_1(t), \qquad \varphi = \delta \cdot f_2(t), \qquad$ где δ — малая величина, а $f_1(t), \quad f_2(t)$ — некоторые функции от времени, ограниченные

вместе с их производными. Принимая $\sin \varphi = \varphi \cos \varphi = 1$ и отбрасывая в уравнении (10) величины, имеющие порядок δ^2 и выше, получим окончательное уравнение движения пирога

$$aS - C \cdot S = d, \tag{11}$$

где

$$a = \frac{H^2}{BL} \cdot \frac{\sin \alpha}{2l} + (b_2 \cdot d_1 - a_2 \cdot C_1),$$

$$C = \frac{\sin \alpha}{2l} + (a_1 \cdot C_2 - b_1 \cdot d_2), \qquad (12)$$

$$d = a_1 \cdot C_1 - b_1 \cdot d_1;$$

$$a_1 = A_1 \cdot g,$$

$$a_2 = -A_1 L \frac{\cos \beta \cdot \sin \alpha}{2l} -$$

$$-A_2 \left(1 - \frac{L \sin \beta \cdot \sin \alpha}{2l}\right),$$

$$b_1 = f \cdot g,$$

$$b_{2} = \left(1 - \frac{L\sin\beta \cdot \sin\alpha}{2l}\right) - f \cdot L \frac{\cos\beta \cdot \sin\alpha}{2l};$$

$$C_{1} = \cos\beta - f \cdot \sin\beta,$$

$$C_{2} = \sin\beta - f \cdot \cos\beta,$$

$$d_{1} = \cos\varphi_{0} - f \cdot \sin\varphi_{0},$$

$$d_{2} = \sin\varphi_{0} - f \cdot \cos\varphi_{0}.$$
(14)

Учитывая сложный вид коэффициентов a и c в выражениях (12)–(14), оценку их значений (положительные или отрицательные) в общем виде зависимостей от α , φ_0 , l, f провести невозможно.

Рассмотрим решение, соответствующее варианту рассматриваемой задачи с характеристиками практически используемых одновалковых зубчатых дробилок в агломерационном цеху филиала № 12 ЗАО «Внешторгсервис».

Общее решение уравнения (11) имеет вид

$$S = C_1 \cdot e^{\lambda t} + C_2 \cdot e^{-\lambda t} - \frac{d}{C}.$$

Постоянные интегрирования C_1 и C_2 определяются при выполнении начальных усло-

вий: при t=0 правый торец тела (ABKE) находится в начале координат, т. е. S=0 и имеет скорость V_{AO} , зависящую от скорости движения V_{I} по наклонной направляющей $O_{I}O$.

Проблема определения V_{AO} представлена ниже.

Выполнение начальных условий (t=0, S=0, S= V_{AO}) даёт закон движения конца аглоспёка в виде

$$S = \frac{1}{2} \left(\frac{d}{c} + \frac{V_{AO}}{\lambda} \right) \cdot e^{\lambda t} + \frac{1}{2} \left(\frac{d}{c} - \frac{V_{AO}}{\lambda} \right) \cdot e^{-\lambda t} - \frac{d}{c}.$$
 (15)

Для определения начальной скорости в уравнении (15) будем считать, что на этапе перехода поступательного движения пирога агломерата на участке O_IA к плоскопараллельному в дальнейшем не происходит потеря [2] кинетической энергии, т. е.

$$\frac{mV_1^2}{2} = \frac{mV_C^2}{2} + \frac{J_C\omega_1^2}{2}.$$
 (16)

Из (16) следует, что в момент отрыва пирога от направляющей плоскости O_IA скорость $V_C \neq V_I$ и, естественно, $V_{AO} \neq V_I$.

Уравнение (16) позволяет определить начальную скорость V_{AO} для уравнения (15)

$$V_{AO} = \frac{2l}{\sin \alpha} \cdot \frac{V_1}{\sqrt{DC^2 + H^2}}, \quad (17)$$

где в момент отрыва расстояние $(DC)^2$ определяется по теореме косинусов:

$$(DC)^{2} = (BD)^{2} + (BC)^{2} -$$

$$-2 \cdot BD \cdot BC \cdot \cos(90^{\circ} - \varphi_{0}), \tag{18}$$

где $BC=\alpha$, $BD=2l \cdot \operatorname{ctg} \alpha$.

При численных параметрах, удовлетворяющих условиям производства агломерата α =45°, f=0,5, l_{cn} =2 м, V_0 =0,0234 м/с, 2l=1 м, 2h=0,32 м, дифференциальное уравнение движения аглоспека примет вид

$$0,766 S - 2,146 \cdot S = -5,373.$$

Решение данного уравнения при принятых начальных условиях будет выглядеть таким образом:

$$S = 0,289 \cdot e^{1,674t} -$$

$$-2,789 \cdot e^{-1,674t} + 2,503.$$
(19)

График зависимости перемещения правого конца агломерата при подаче на колосниковую решётку внутрь рабочей зоны одновалковой зубчатой дробилки представлен на рисунке 2.

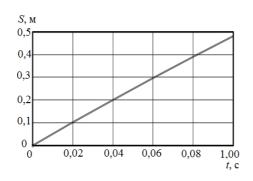


Рисунок 2 Зависимость перемещения пирога аглоспека

Таким образом, в результате аналитических исследований установлено, что величина перемещения агломерационного пирога внутрь рабочей камеры дробилки носит линейный характер.

Выводы и направление дальнейших исслелований.

Количественные результаты решения (19) подтверждают принятую линеаризацию дифференциального уравнения (10). При этом теоретически подтверждается возможность проникновения аглопирога на половину своей длины (0,5 м) за время, примерно равное 1 с, под действие зубьев звёздочек ротора.

Полученные решения позволяют прогнозировать вариации геометрических и кинематических характеристик агломерационной машины при подаче аглоспека в рабочую камеру дробилки.

Найденные решения являются необходимыми при согласовании процесса подачи агломерационного пирога на дробление и его контактирования с зубьями звёздочек ротора.

Библиографический список

- 1. Жилкин, В. П. Производство агломерата, оборудование, автоматизация [Текст] / В. П. Жилкин, Д. Н. Доронин. Екатеринбург: Уральский центр ПР и рекламы, 2004. 292 с.
- 2. Мороз, В. В. Параметрический анализ одновалковой зубчатой дробилки [Текст] / В. В. Мороз, Э. П. Левченко, О. А. Левченко // Сборник научных трудов ДонГТУ. Алчевск, 2016. Вып. 46. С. 161–168.
- 3. Левченко, О. О. Повышение эффективности дробления агломерата путём усовершенствования конструктивных параметров одновалковой зубчатой дробилки [Текст]: дис. ... канд. техн. наук: 05.05.08 / Левченко Оксана Александровна. Донецк, 2009. 176 с.
- 4. Развитие технического уровня одновалковых зубчатых дробилок горячего агломерата [Текст] : монография / О. А. Левченко и др. Алчевск : ДонГТУ, 2016. 190 с.
- 5. Тарг, С. М. Краткий курс теоретической механики [Текст] / С. М. Тарг. М. : Наука, 1972. 478 с.
- 6. Фаворин, М. В. Моменты инерции тел [Текст] / М. В. Фаворин. М. : Машиностроение, 1970.-312~c.
- 7. Батуев, Г. С. Инженерные методы исследований ударных процессов [Текст] / Г. С. Батуев, Ю. В. Голубков, А. К. Ефремов и др. М.: Машиностроение, 1977. 240 с.
 - © Mopos B. B.
 - © Рубежанский В. И.
 - © <u>Левченко Э. П.</u>

Рекомендована к печати к.т.н., проф. каф. ММК ДонГТУ Ульяницким В. Н., д.т.н., проф., зав. каф. МОЗЧМ ДонНТУ Еронько С. П.

Статья поступила в редакцию 12.03.18.

Мороз В. В., к.ф.-м.н. Рубежанський В. І., к.т.н. Левченко Е. П. (ДонДТУ, м. Алчевськ, ЛНР) ОЦІНКА ТА УТОЧНЕННЯ УМОВ ПОДАННЯ АГЛОСПЕКУ У РОБОЧУ ЗОНУ ОДНОВАЛКОВОЇ ЗУБЧАСТОЇ ДРОБАРКИ

Наведено результати аналітичних досліджень подання агломераційного пирога у робочий простір одновалкової зубчастої дробарки гарячого агломерату. Встановлено залежність перемішення аглоспеку від часу його сповзання по напрямній поверхні ножа, що зрізає.

Ключові слова: аналітичні дослідження, одновалкова зубчаста дробарка, агломераційний пиріг, переміщення, диференційні рівняння.

Moroz V. V., PhD in Physics and Math Sciences Rubezhanskiy V. I., PhD Levchenko E. P. (DonSTU, Alchevsk, LPR)

ASSESSMENT AND REFINEMENT OF CONDITIONS FOR FEEDING THE SINTER CAKE INTO WORKING ZONE OF THE SINGLE-SPINDLE GEAR CRUSHER

There have been given the analytical research results for feeding the agglomerated cake to working area of the single-spindle gear hot agglomerate crusher. The dependence has been determined for agglomerated cake moving from its sliding time along the guide surface of share blade.

Key words: analytical research, single-spindle gear crusher, agglomerated cake, moving, differential equations.