УДК 621. 313: 621.318.122

д.т.н. Заблодский Н.Н., к.т.н. Плюгин В.Е., Грицюк В.Ю., Кулдыркаев И.Н. (ДонГТУ, г. Алчевск, Украина)

МОДЕЛИРОВАНИЕ ВЗАИМОСВЯЗАННЫХ ЭЛЕКТРОМАГНИТНЫХ И МЕХАНИЧЕСКИХ ПРОЦЕССОВ В МАССИВЕ РОТОРА ШНЕКОВОГО ПОЛИФУНКЦИОНАЛЬНОГО ЭЛЕКТРОМЕХАНИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ

Рассмотрена конечно-элементная математическая модель взаимосвязанных электромагнитных и механических процессов в массиве полого ферромагнитного ротора ПЭМП. Получены данные о распределении механических напряжений в полом ферромагнитном роторе.

Ключевые слова: электромеханический преобразователь, массивный ротор, электромагнитное поле, механические напряжения, конечно-элементная модель.

Проблема и ее связь с научными и практическими задачами. С появлением нового класса полифункциональных электромеханических преобразователей (ПЭМП), в которых активные подвижные части испытывают одновременно комбинированное воздействие нескольких видов нагружения, возникла острая необходимость решения задач прогнозирования и контроля изменения параметров и характеристик при напряженно-деформированном состоянии активных элементов [1]. Кроме того, учет влияния механических напряжений важен и для некоторых современных типов асинхронных двигателей приводов угледобывающих механизмов, имеющих структуру ротора, предполагающую ответвление магнитного потока через вал.

Предварительные расчеты указывают на то, что в полом ферромагнитном роторе шнекового ПЭМП могут возникать существенные внутренние механические напряжения (превышающие точность измерений) при рабочих величинах крутящего момента в сечениях, совпадающих с концами активных зон статоров двигательного и тормозного модулей. Это обстоятельство указывает на возможность проявления известного эффекта Матисси, заключающегося в создании магнитного поля в ферромагнитном цилиндре, вследствие

воздействия на него крутящего момента. В свою очередь в роторе ПЭМП будут возникать ответные деформации кручения при одновременном воздействии продольного и кругового магнитного поля, созданного протекающими вдоль ротора вихревыми токами (эффект Видемана). Другой вид механических напряжений - напряжения сжатия, возникают в роторе при больших осевых нагрузках. Наконец, механические напряжения могут возникать из-за резкого перепада температур массива ротора вдоль оси. Перечисленные внутренние напряжения будут существовать в динамических и квазиустановившихся режимах работы ПЭМП.

Точное моделирование процессов в требует совместного решения электромагнитной и механической задач. На сегодняшний день существует небольшое количество конечно-элементных программных комплексов [2], которые содержат указанные физические модули, и еще меньше [3], которые позволяют решать взаимосвязанные задачи магнитоупругости и магнитострикции. В работах [4, 5] представлены результаты расчета взаимосвязанной электромагнитной и механической задачи с использованием программно-вычислительного комплекса Comsol Multiphysics, показывающие весьма удовлетворительное соответствие с данными физического эксперимента.

Необходимо отметить, что создание точных математических моделей, учитывающих взаимосвязь механических напряжений с параметрами и характеристиками электромеханического преобразователя, представляет теоретический интерес.

Постановка задачи. Задачей данной работы является создание конечно-элементной математической модели взаимосвязанных электромагнитных и механических процессов в массиве полого ферромагнитного ротора и проведение численных экспериментов по формированию массива данных для контроля и прогнозирования изменений параметров и характеристик ПЭМП.

Изложение материала и его результаты. Явление изменения намагниченности ферромагнитного тела при его деформации называется магнитоупругостью (эффектом Виллари).

Для магнитоупругого эффекта справедливо уравнение

$$B = d \cdot \sigma + \mu_0 \cdot \mu_r(\sigma) \cdot H, \tag{1}$$

где B — магнитная индукция;

d — пьезомагнитный модуль;

σ – механическое напряжение;

μ₀ – магнитная проницаемость вакуума;

 μ_r – относительная магнитная проницаемость;

H – напряженность магнитного поля.

Линейное изменение размеров ферромагнитных тел при намагничивании характеризуется коэффициентом магнитострикции $\lambda = \Delta l/l$. Величина λ невелика и зависит от напряженности магнитного поля. Максимальное значение λ для большинства материалов лежит в пределах от $20\cdot10^{-6}$ до $90\cdot10^{-6}$. Однако усилия, возникающие вследствие магнитострикции, весьма значительны. Например, для ограниченного в деформации никелевого стержня сечением 1 см^2 , развиваемое усилие может достигать 70 кг.

Для магнитострикции имеем

$$\lambda = \eta(H) \cdot \sigma + d \cdot H, \tag{2}$$

где η — величина, обратная модулю Юнга.

Для последующих преобразований параметры η и μ_r необходимо принять константами. Учитывая изменение размеров ротора в осевом направлении, получим

$$\lambda = \frac{\partial u}{\partial x},\tag{3}$$

где $\vec{u} = f(x, y, z)$ – перемещение.

Взяв вторую производную по времени в уравнениях (2) и (3) получим

$$\frac{\partial}{\partial x} \left(\frac{\partial^2 u}{\partial t^2} \right) = \eta \frac{\partial^2 \sigma}{\partial t^2} + d \frac{\partial^2 H}{\partial t^2}.$$
 (4)

По второму закону Ньютона получим

$$\frac{\partial \left(\frac{F}{S}\right)}{\partial x} = \frac{\partial F}{\partial V} = \frac{\partial (m \cdot a)}{\partial V} =$$

$$= \rho \cdot a = \rho \frac{\partial^2 u}{\partial t^2} = \frac{\partial \sigma}{\partial x}, \tag{5}$$

где m – масса;

а – ускорение;

ρ – плотность материала.

Тогда выражение (4) примет вид

$$\frac{\partial^2 \sigma}{\partial x^2} = \rho \eta \frac{\partial^2 \sigma}{\partial t^2} + \rho d \frac{\partial^2 H}{\partial t^2}.$$
 (6)

Запишем уравнения Максвелла

$$\begin{cases} \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}, \\ \vec{\nabla} \times \vec{B} = \mu \vec{J} + \mu \epsilon \frac{\partial \vec{E}}{\partial t}, \end{cases}$$
(7)

где \vec{E} — напряженность электрического поля;

 \vec{J} – плотность токов проводимости;

ε – диэлектрическая проницаемость;

 γ — удельная электрическая проводимость.

Используя закон Ома в дифференциальной форме $J=\gamma E$, также учитывая, что $\operatorname{div} \vec{B}=0$, в результате математических преобразований получим систему уравнений [4]

$$\begin{cases} \nabla^{2}H = \gamma d \frac{\partial \sigma}{\partial t} + \frac{d}{\mu} (\mu \varepsilon - \rho \eta) \frac{\partial^{2} \sigma}{\partial t^{2}} + \\ + \mu \gamma \frac{\partial H}{\partial t} + \frac{(\mu^{2} \varepsilon - \rho d^{2})}{\mu} \frac{\partial^{2} H}{\partial t^{2}}, \\ \frac{\partial^{2} \sigma}{\partial x^{2}} = \rho \eta \frac{\partial^{2} \sigma}{\partial t^{2}} + \rho d \frac{\partial^{2} H}{\partial t^{2}}. \end{cases}$$
(8)

Для случая, когда магнитное поле изменяется по гармоническому закону, система уравнений (8) принимает вид

$$\begin{cases} \nabla^2 H = \omega^2 k_1 \sigma + \omega^2 k_2 H, \\ \frac{\partial^2 \sigma}{\partial x^2} = \omega^2 k_3 \sigma + \omega^2 k_4 H, \end{cases}$$
(9)

где ω — угловая частота изменения магнитного поля;

$$k_{1} = \frac{\left(d(\rho \eta - \mu \varepsilon) + \frac{i\mu \gamma d}{\omega}\right)}{\mu};$$

$$k_{2} = \frac{\left(\left(\rho d^{2} - \mu^{2} \varepsilon\right) + \frac{i\mu^{2} \gamma}{\omega}\right)}{\mu};$$

$$k_{3} = -\rho \gamma; \quad k_{4} = -\rho d.$$

Расчет выполнен в осесимметричной постановке. Моделируемая плоскость — плоскость zr. Горизонтальная ось модели является осью симметрии z системы, вертикальная ось модели совпадает с радиальной осью системы r. Такая пространственная постановка задачи практически эквивалентна трехмерной постановке, т.к. объемная модель может быть получена

поворотом осесимметричной модели вокруг оси *z* на 360 градусов.

Электромагнитная часть задачи решается относительно векторного магнитного потенциала. Моделируемый процесс гармонический, квазистационарный. Шнековый ПЭМП (радиально-осевое сечение) представлен в виде нескольких прямоугольников (рисунок 1). В качестве источника продольного магнитного поля служит полый медный цилиндр 1, расположенный коаксиально по отношению к ферромагнитному ротору 2. Ток в медном цилиндре задан в качестве азимутальной компоненты плотности тока в зонах, прилегающих к торцевым участкам статоров двигательного и тормозного модулей (т.е. под участками ротора, в которых протекают вихревые токи, имеющие преимущественно тангенциальную составляющую). В качестве отдельных расчетных подобластей модели заданы также воздушные участки 3, вал 4 и магнитопроводы статоров 5.

Для создания взаимосвязанной конечноэлементной модели использовался программный комплекс Comsol Multiphysics 3.5a. Связь между физическими модулями АС/DC и Structural mechanics реализована путем добавления соответствующих математических выражений (9) в настройки выражений расчетной подобласти ротора (Subdomain expressions). Основные свойства материалов, задаваемые как исходные данные для каждой расчетной подобласти модели, приведены в таблице 1.

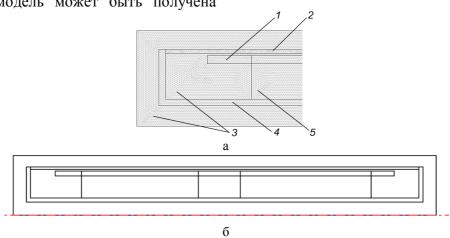


Рисунок 1 – Конечно-элементная сетка (а) и геометрия модели (б)

На рисунке 2 показана картина распределения магнитной индукции в торцевой области статора тормозного модуля шнекового ПЭМП в виде силовых линий поля. Составляющая тока медного цилиндра (лобового участка обмотки статора), протекающая перпендикулярно плоскости рассматриваемого рисунка, создает магнитное поле, силовые линии которого рас-

полагаются вдоль длины полого ферромагнитного ротора.

Распределение механических напряжений вдоль длины ферромагнитного ротора ПЭМП представлено на рисунке 3. По мере продвижения вдоль оси *z* величина механических напряжений равномерно снижается, и посередине длины ротора спадает практически до нуля.

Таблица 1 – Свойства материалов расчетных подобластей модели

Название расчетной подобласти	Относительная магнитная проницаемость, μ_r	Удельная электрическая проводимость, γ (См/м)
1. Медный цилиндр	1	$5,8\cdot10^{7}$
2. Ферромагнитный ротор	Кривая намагничивания Ст. 3	$0.6 \cdot 10^7$
3. Воздушная область	1	0
4. Вал	Кривая намагничивания Ст. 3	$0.6 \cdot 10^7$
5. Магнитопровод статора	Кривая намагничивания Ст. 2211	0

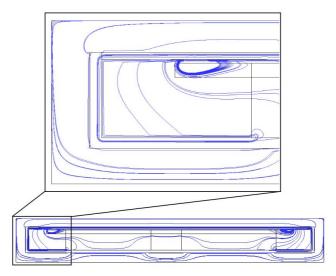


Рисунок 2 — Картина распределения магнитной индукции в торцевой области статора тормозного модуля шнекового ПЭМП в виде силовых линий поля

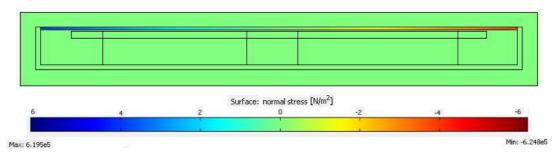


Рисунок 3 — Распределение механических напряжений вдоль длины ферромагнитного ротора

Наибольшие усилия сжатия возникают в местах соприкосновения ротора и вала (подшипниковых щитов). С ростом индукции магнитного поля величина механических напряжений в массиве ротора ПЭМП возрастает практически пропорционально.

Выводы и направление дальнейших исследований. Рассмотрена конечноэлементная математическая модель взаимосвязанных электромагнитных и механических процессов в массиве полого ферромагнитного ротора ПЭМП. Полученные с помощью конечно-элементной модели данные о распределении механических напряжений в ферромагнитном роторе могут быть использованы при формировании массива данных для контроля и прогнозирования изменений параметров и характеристик ПЭМП.

Дальнейшие исследования должны быть направлены на подробное изучение влияния всевозможных видов механических напряжений, возникающих в полом ферромагнитном роторе, на параметры и характеристики ПЭМП, а также на повышение степени адекватности математической модели.

Библиографический список

- 1. Заблодский Н. Н. Полифункциональные электромеханические преобразователи технологического назначения: монография / Н. Н. Заблодский. Алчевск: ДонГТУ, 2008. 340 с.
- 2. Математическое моделирование в нелинейной механике (обзор программных комплексов для решения задач моделирования сложных систем) [электронный ресурс] / Е. Н. Чумаченко и др. // Статьи сайта IKI.RSSI.RU Режим доступа к источнику: http://www.iki.rssi.ru/books/2009chumachenko.pdf
- 3. Анализ и выбор программных продуктов для решения инженерных задач приборостроения [электронный ресурс] / В. А. Васильев, М. А. Калмыкова // Современная техника и технологии. Март, 2013. Режим доступа к источнику: http://technology.snauka.ru/2013/03/17024
- 4. Mathematical modelling and simulation of magnetostrictive materials by Comsol Multiphysics [электронный ресурс] / M. Bailoni, Y. Wei, L. Norum // Статьи сайта comsol.com Режим доступа к источнику: comsol.com/papers/5304/download/Norum.pdf
- 5. Coupled structural and magnetic models: linear magnetostriction in Comsol [электронный ресурс] / Julie C. Slaughter // Статьи сайта comsol.com Режим доступа к источнику: comsol.com/papers/6357

Рекомендована к печати д.т.н., проф. Лущиком В.Д.

Статья поступила в редакцию 08.07.13.

д.т.н. Заблодський М.М., к.т.н. Плюгін В.Е., Грицюк В.Ю., Кулдиркаєв І.М. (ДонДТУ, м. Алчевськ, Україна)

МОДЕЛЮВАННЯ ВЗАЄМОПОВ'ЯЗАНИХ ЕЛЕКТРОМАГНІТНИХ І МЕХАНІЧНИХ ПРОЦЕСІВ У МАСИВІ РОТОРА ШНЕКОВОГО ПОЛІФУНКЦІОНАЛЬНОГО ЕЛЕКТРОМЕХАНІЧНОГО ПЕРЕТВОРЮВАЧА

Розглянуто скінченно-елементну математичну модель взаємопов'язаних електромагнітних і механічних процесів у масиві порожнистого феромагнітного ротора ПЕМП. Отримано дані розподілу механічних напружень в порожнистому феромагнітному роторі.

Ключові слова: електромеханічний перетворювач, масивний ротор, електромагнітне поле, механічні напруження, скінченно-елементна модель.

Zablodskiy N.N., Pliugin V.E., Gritsyuk V.Yu., Kuldyrkaev I.N. (DonSTU, Alchevsk, Ukraine) MODELING INTERCONNECTED ELECTROMAGNETIC AND MECHANICAL PROCESSES IN ARRAY ROTOR OF POLIFUNCTIONAL ELECTROMECHANICAL TRANSDUCER

Presents the finite-element mathematical model of interconnected electromagnetic and mechanical processes in array hollow ferromagnetic rotor PEMT. The data on the distribution of stresses in hollow ferromagnetic rotor

Key words: electromechanical transducer, massive rotor, electromagnetic field, mechanical stress, finite-element model.